Objective 1: Determining if an Experiment is a Binomial Experiment

For an experiment to be considered a binomial experiment, four things must hold:

- 1. The experiment is performed for a **fixed number of trials**. (We let *n* denote the number of trials.)
- 2. The trials are **independent**.
- 3. For each trial, there are only **two** mutually exclusive **outcomes** (success and failure).
- 4. The **probability of success is the same** for each trial. (We let *p* denote the probability of success.)

Example: Determine whether the following experiments are binomial experiments. Explain.

(a) According to a recent study, 33% of Americans, 23 years or older, have been arrested. A random sample of 500 Americans, 23 years or older, are asked whether or not they have been arrested.

(b) Mary is at the fair, playing pop the balloon with 6 darts. There are 20 balloons total, 15 which say "LOSE" and 5 which say "WIN".

(c) Bob flips a coin until the coin lands on heads.

Phrase	Math Symbol	Calculator	Example	
exactly, equals, is	P(X=x)	binompdf(n, p, x)	"exactly 5" P(X = 5) = binompdf(n, p, 5)	
between a and b, inclusive	$P(a \le X \le b)$	binompdf $(n, p, a) + \cdots$ + binompdf (n, p, b) OR binomcdf (n, p, b) - binomcdf $(n, p, a - 1)$	"between 6 and 8, inclusive" $P(6 \le X \le 8) = binompdf(n, p, 6)$ + binompdf(n, p, 7) + binompdf(n, p, 8) OR "between 5 and 12, inclusive" $P(5 \le X \le 12) = binomcdf(n, p, 12)$ - binomcdf(n, p, 4)	
no more than, at most	$P(X \le x)$	binomcdf(<i>n</i> , <i>p</i> , <i>x</i>)	"no more than 5" $P(X \le 5) = \text{binomcdf}(n, p, 5)$	
fewer than, less than	P(X < x)	binomcdf(<i>n</i> , <i>p</i> , <i>x</i> − 1)	"fewer than 5" P(X < 5) = binomcdf(n, p, 4)	
at least, no less than	$P(X \ge x)$	1 – binomcdf(<i>n</i> , <i>p</i> , <i>x</i> – 1)	"at least 7" $P(X \ge 7) = 1 - \text{binomcdf}(n, p, 6)$	
more than, greater than	P(X > x)	1 - binomcdf(n, p, x)	"more than 7" P(X > 7) = 1 - binomcdf(n, p, 7)	
n = number of trials $p =$ probability of success $x =$ number of success				

You can use this table to help you calculate probabilities for binomial distributions.

To get to either **binompdf** or **binomcdf** in your calculator, press and scroll up until you find either **binompdf** or **binomcdf**.

Example: A study was done which stated that 41% of Americans only have a cell-phone in their house (no landline). What is the probability that in a random sample of 50 American households, that exactly 20 only have a cell-phone?

Example: According to a recent article, 38% of buses in Chicago arrive on time. A random sample of 30 Chicago buses is taken.

(a) In a random sample of 30 Chicago buses, what is the probability that less than 10 arrive on time?

(b) In a random sample of 30 Chicago buses, what is the probability that exactly 17 arrive on time?

(c) In a random sample of 30 Chicago buses, what is the probability that at least 12 arrive on time?

(d) In a random sample of 30 Chicago buses, what is the probability that between 5 and 7, inclusive, arrive on time?

P(between 5 and 7, inclusive) =

P(between 5 and 7, inclusive) =

Objective 3: Finding Probabilities, Percents, or Proportions Using Normalcdf

Procedure: To find a probability, percent, or proportion for a normal distribution

Step 1: Draw the normal curve (optional).

Step 2: Calculate any z-scores using the formula $z = \frac{x-\mu}{\sigma}$.

Step 3: Find the probability using **normalcdf** and entering in the lower bound and upper bound.

(To get to **normalcdf** in your calculator press **and select normalcdf**.)

• If you have a TI-84, the following menu will appear. You will type your lower bound under lower and the upper bound under upper. Keep the mean, μ , at 0 and the standard deviation, σ , at 1.

σ:1 Paste

Example: The weight of an American male is normally distributed with a mean of 199 pounds and a standard deviation of 15 pounds.

(a) What is the probability that a randomly selected American male will weigh less than 215 pounds?

<u>Step 1 (optional)</u>	<u>Step 2</u>	<u>Step 3</u>
	, 1 1	

Example (continued): The weight of an American male is normally distributed with a mean of 199 pounds and a standard deviation of 15 pounds.

(b) What percent of American males weigh more than 185 pounds?

<u>Step 1 (optional)</u>	<u>Step 2</u>	<u>Step 3</u>
	1 1 1 1	
	1 1 1	

(c) What proportion of American males weigh between 150 and 175 pounds?

<u>Step 1 (optional)</u>	<u>Step 2</u>	<u>Step 3</u>
		1 1 1
		1

Objective 4: Finding the Value of a Normal Random Variable Using InvNorm

Procedure: To find a probability, percent, or proportion for a normal distribution

Step 1: Draw the normal curve (optional).

Step 2: Find any z-scores by using **invNorm** and entering in the area to the LEFT of the value you

are trying to find. (To get to **invNorm** in your calculator press **and select invNorm**.)

• If you have a TI-84, the following menu will appear. You will type in the area to the left under area and keep the mean, μ , at 0 and the standard deviation, σ , at 1.

nowijonio)
area:
h 🖞
at 1
<u>⊻•</u> ⊥.
Paste

Step 3: Find the value of your random variable, x, by using the formula $x = \mu + z\sigma$.

- **Example**: The weight of an American male is normally distributed with a mean of 199 pounds and a standard deviation of 15 pounds.
- (a) Determine the 75th percentile for the weight of American males.

<u>Step 1 (optional)</u>		<u>Step 2</u>	<u>Step 3</u>

(b) Determine the weights that make up the middle 80% of weights for American males.Step 1 (optional)Step 2Step 3